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The structure of the vorticity fields in homogeneous turbulent shear flow and various 
irrotational straining flows is examined using results from direct numerical 
simulations of the unsteady, incompressible Navier-Stokes equations with up to 
128 x 128 x 128 grid points. In  homogeneous shear flow, the distribution of the 
inclination angle of the vorticity vectors and contour plots of two-point correlations 
of both velocity and vorticity are consistent with the existence of persistent vortical 
structures inclined with respect to the flow direction. Early in the development of 
these shear flows, the angle of inclination at which most of these structures are found 
is near 45O; after the flow develops, this angle lies between 35'40". Instantaneous 
vorticity-vector and vortex-line plots confirm the presence of hairpin vortices in this 
flow at the two Reynolds numbers simulated. These vortices are formed by the roll-up 
of sheets of mean spanwise vorticity. The average hairpin leg spacing decreases with 
increasing Reynolds number but increases relative to the Taylor microscale for 
developed shear flows. Examination of irrotational axisymmetric contraction, axi- 
symmetric expansion, and plane strain flows shows, as expected, that the vorticity 
tends to be aligned with the direction of positive strain. For example, the axisym- 
metric contraction flow is dominated by coherent longitudinal vortices. Without the 
presence of mean shear, however, hairpin structures do not develop. The simulations 
strongly indicate that the vorticity occurs in coherent filaments that are stretched 
and strengthened by the mean strain. When compressed, these filaments appear to 
buckle rather than to decream in strength. 

1. Introduction 
Recently, there has been much effort devoted to the search for and examination 

of organized structures in turbulent flows. Virtually all the work in this area has 
concentrated on inhomogeneous flows such as the turbulent boundary layer or the 
mixing layer. A notable exception is the work of Townsend (1970), who proposes a 
'double-roller eddy', or a pair of inclined vortices, as the characteristic structure in 
both homogeneous and inhomogeneous shear flows. 

Beginning with Theodorsen (1952), the existence of hairpin vortices in turbulent 
boundary layers has been conjectured by a number of investigators. Flow visualiza- 
tion by Head t Bandyopadhyay (1981) provided support for the presence of hairpin 
vortices in turbulent boundary layers. Recently, using numerically simulated flow 
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fields, Moin t Kim (1985) showed that fully developed turbulent channel flow is 
dominated by hairpin vortices, often inclined at 45’ to the mean-flow direction. Their 
conclusion was based on examination of the probability distribution of the inclination 
angle of the vorticity vectors, two-point velocity and vorticity correlations with 
various directions of ‘probe’ separation, plots of vorticity vectors projected onto 
inclined planes, and the topology of vortex lines traced in three-dimensional space. 
Kim t Moin (1986) used conditional-sampling techniques to verify that the bursting 
process is associated with the hairpin vortices. 

In  the Moin t Kim study, it was apparent that hairpin vortices are often formed 
by the roll-up of sheets of spanwise (mean) vorticity in the regions away from the 
walls. This observation, and the fact that deformation of sheets of spanwise vorticity 
by random velocity fluctuations and stretching by the mean rate of strain are 
sufficient ingredients for the generation of the hairpins, led us to conjecture that 
hairpin vortices are the characteristic structures not only in wall-bounded shear flows 
but in all turbulent shear flows. To validate this conjecture, we applied the same 
techniques used in the channel-flow study to the simplest turbulent shear flow, 
homogeneous turbulence in the presence of uniform shear. 

In  addition, homogeneous turbulent flows subject to various uniform irrotational 
strains were examined for persistent organized structure. These studies indicate that 
mean shear is required for the generation of hairpins. 

The objective of this investigation is to examine a number of homogeneous 
‘building-block’ flows to determine if their organized structure, if any exists, is 
similar to that found in inhomogeneous flows. Such similarities would reinforce the 
relevance of these flows to the understanding of more complex turbulent flows. 

In  92, the numerical method used to generate the flow data is briefly presented, 
along with the dimensionless parameters of the computed fields. An analysis of 
statistical correlations and instantaneous vorticity fields is used in 993 and 4 to 
ascertain whether organized structure exists in the flow fields; 93 covers shear flow 
at two Reynolds numbers and 94 covers three forms of irrotationally strained flows. 
A summary of results and conclusions is presented in 95. 

2. Numerical simulation of homogeneous turbulent flows 
All the flow fields examined in this report were generated by direct numerical 

simulation of the three-dimensional, time-dependent, incompressible NavierStokes 
and continuity equations. These calculations were performed by using Rogallo’s 
(1981) computer code with up to 128 x 128 x 128 grid points. Fourier-spectral 
methods are used for the spatial representation of the velocity field. The initial 
velocity fields were divergence-free and random, and had a prescribed three- 
dimensional energy spectrum. The computational grid deformed to follow the mean 
flow, permitting the application of periodic boundary conditions. Throughout this 
paper we refer to u (or ul), v (or u2) and w (or u3) as the fluctuating velocity 
components in the 2-, y- and z-directions respectively. U ,  (or simply U), U2 and U, 
are the corresponding mean-velocity components. Similarly, w, (or WJ, wy (or u2) and 
wz (or w3)  are the components of fluctuating vorticity in the same three directions. 
For the shear-flow cases it is convenient to define two additional directions, the 8- 

and n-directions, which correspond to the 2- and y-directions rotated counterclock- 
wise by 45’. The 8-direction corresponds to the direction of principal elongation and 
the n-direction is the direction of principal contraction. The fluctuating components 
of vorticity along these directions are referred to as u, and u,. 
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2.1. Homogeneous turbulent shear jlow 
The homogeneous-shear-flow results presented in this paper are taken from a 
low-Reynolds-number simulation (83.1) on a 1 2 8 x 6 4 ~ 6 4  grid, and a higher- 
Reynolds-number simulation (83.2) on a 128 x 128 x 128 grid. The grid spacing for 
the low-Reynolds-number case was 1.46 when non-dimensionalized by (v /S) t ,  where 
S is the shear rate and v the kinematic viscosity. The grid spacing for the 
high-Reynolds-number case was twice as long in the streamwise direction as in the 
other two coordinate directions with Ax/(v /S) i  = 4.14. The imposed mean'flow is in 
the x-direction and is a linear function of y :  

U(Y) = SY. 

x' = x-syt, y' = y, 2' = 2,  t' = t .  

The transformation that moves the computational grid with the mean flow is thus 
given by 

As a result of the imposed mean shear, the computational grid becomes skewed as 
time increases. The mean shear moves (2, 2)-planes at large y further than those at 
small y. To allow the simulation to progress for a substantial time, it is necessary 
to remesh the grid at regular intervals. The remeshing procedure utilizes the periodic 
boundary condition in the streamwise direction to move data from the skewed grid 
onto a grid skewed in the opposite sense. After remeshing, the grid progresses to its 
initial orthogonal position and eventually continues to the skewed position where 
remeshing becomes necessary again. On the computational grids used here, remeshing 
is done at St of 1 .O, 3.0,5.0, . . . to avoid having to interpolate data onto the new grid. 
The fields at St of 0,2.0,4.0, . . . are on an orthogonal mesh and are saved for analysis. 
For the low-Reynolds-number case, S = 10.0 and v = 0.045. In  the high-Reynolds- 
number case, S = 28.3 and Y = 0.010. The values of S and v are in arbitrary units; 
however, they can be used to form non-dimensional length (2+ = l / ( v /S )* )  and time 
( t  = St) scales. The total dimensionless integration time for the low-Reynolds-number 
calculation was St = 4.0, beyond which time the shearing created structures approach- 
ing the size of the computational box. We examined the field at St = 2.0, which 
had microscale Reynolds number Re, = 14.2 (based on q = (G)f and longitudinal 
Taylor microscale All, J. The high-Reynolds-number simulation did not outgrow the 
computational box size until about St = 16.0. Even this highest Reynolds number 
field at St = 16.0 does not have a distinct inertial subrange and the small scales, 
although more isotropic than the energy-containing eddies, retain a fair degree of 
anisotropy. We chose to examine in detail the field at St = 8.0, which had the best 
resolution of the Kolmogorov lengthscale (minimizing the amount of high- 
wavenumber vorticity which might conceal large-scale vortex structure) and had 
developed long enough to be well into the asymptotic region of growing turbulence 
kinetic energy and lengthscales. For this field Re, = 72.6. The flow cannot reach a 
statistically steady state with the length and velocity scales continually increasing 
but it does seem to be approaching structural equilibrium with the anisotropy levels 
apparently asymptoting to constant values. The higher-Reynolds-number cam is 
near one of the cases computed by Rogallo (BSH10: Re, = 56.7 at St = 8.0), and its 
asymptotic flow statistics are in good agreement with the data of Tavoularis & Corrsin 
(1981). For example, figure 1 shows the history of the turbulent intensities from the 
present calculation and from the experimental data. Table 1 compares non- 
dimensional parameters obtained in these runs with experimental results. Note that 
at St = 8.6 the experimental microscale Reynolds number is 284. Although the 
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F'IQURE 1. History of the component energy ratios of homogeneous turbulent shear flow. Symbols 
are from data of Tavoularis & Corrsin (1981), and the solid lines are the computational results. 

low Re, high Re, TC TC HGC CHC 
St = 2.0 St = 8.0 St = 8.6 St = 12.7 St = 11.9 St = 3.3 

= qhll, 1 lv  14.2 72.6 284 364 300 180 
Re, = QLll. 1Iv 22.2 118 2 100 3600 2800 1100 
Re, = @/ev 26.1 391 9900 15000 13000 3200 
SLll. 1Iq 2.66 2.60 2.8 2.8 2.3 2.0 
W / E  3.14 8.65 13 12 11 5.8 
qlq; 0.43 0.53 0.52 0.53 0.50 0.47 

0.26 0.16 0.19 0.19 0.20 0.26 
- 2{;* 0.31 0.31 0.29 0.28 0.30 0.28 
u1 u,luI 4 0.55 0.57 0.45 0.45 0.47 0.50 

~ J ~ s  1.7 1.9 2.0 2.1 1.9 
flllU, 3.8 6.2 4.2 4.3 4.1 2.3 

- 
a - 33O -21" - 200 - 20" -22.3' -28" 

TABLE 1. Comparison of shear simulations with experiments. TC, Tavoularis & Corrsin (1981); 
HGC, Harris, Graham & Corrsin (1977); CHC, Champagne, Harris & Corrsin (1970); Lll, 1, inte al 

u; = (u$; ul/rs,ul/ua, ratio of principal stresses; a, angle of principal axes; other quantities 
defined in the text. 

lengthscale from R,, correlation in s-direction; e = v(&,/as,) (aU,/as,) = dissipation; ui = (u,)i, % 

low-Reynolds-number simulation has not reached an asymptotic state, its flow 
statistics are remarkably near the experimental data of Champagne, Harris & Corrsin 
(1970) at St = 3.3. In both the simulations and the experiments, the ratios of the 
principal stresses, U J Q ~  and r1/v3, decrease and the angle of the principal axes a 
increases as Reynolds number decreases. The principal stresses of the velocity field 

- -  are defined by 2 - 1 7  - H a  - 
g 1 , 2  = -f(u:+%2)+[*(ul-u2) + (%UZ)al+, 

us = u:, 
- 

and the angle of the principal axes of the Reynolds stress tensor is 
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FICXTBE 2. Spectra from the high-Reynolds-number simulation at St = 8.0. -, uu-spectra; ----, 
vv-spectra; ---, wur-spectra; (a) one-dimensional energy spectra aa a function of k,; (b)  
one-dimensional energy spectra as a function of k,; (c) one-dimensional energy spectra aa a function 
of k8 : (d )  three-dimensional energy spectra; (e) three-dimensional dissipation spectra. 

For a detailed comparison of these and other quantities with the data for a variety 
of flow parameters, see Rogallo (1981). Both energy and dissipation spectra were 
computed to ensure that the mesh adequately resolved all important lengthscales. 
The spectra for the high-Reynolds-number shear case are shown in figure 2. The 
three-dimensional dissipation spectrum D(k) is obtained from D(k) = k*E(k), where 
E(k)  is the three-dimensional energy spectrum and k is the magnitude of the 
wavenumber vector. It was necessary to adequately represent the dissipation spectra 
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since we were particularly interested in the structure of the vorticity fields. The sharp 
drop at the high-wavenumber end of the dissipation spectra is due to the limited 
number of points in spherical shells in wave space with a high wavenumber 
magnitude. The low-Reynolds-number calculation was carried out to provide very 
good resolution of small dissipative scales and to prevent a wide range of scales from 
concealing possible organized structure. The ratios of the mesh size to the Kolmogorov 
lengthscale of the low- and high-Reynolds-number cases are 1.87 (at St = 2.0) and 
3.95 (at St = 8.0) respectively; thus the low-Reynolds-number case has better 
resolution of the small scales. Since the Kolmogorov scale is not known prior to 
generating a numerical solution, it is useful to note that the length (v /S)t  is a 
reasonable estimate of the size of small-scale structures, at least over the range of 
S and Y used in our simulations. This is related to the diameter of the Burgers (1948) 
vortex 

where A is the strain rate. The scale I is a measure of the equilibrium diameter of 
a vortex subjected to uniform stretching along its axis in a viscous fluid. 

2.2. Homogeneous irrotational straining flows 
Several homogeneous irrotational straining flows were examined. The flow fields were 
generated by Lee & Reynolds (1985) on a 128 x 128 x 128 grid that deformed with 
the mean strain, and were computed at low Reynolds numbers to clearly reveal 
vortical structure. All simulations were begun from an isotropic field that had been 
allowed to develop a realistic energy spectrum. One field each of axisymmetric 
contraction, axisymmetric expansion and plane strain was selected for this study. 
The non-dimensional strain rate Sq2/c ranged from 3.09 to 3.81, where 

This definition of S is consistent with the definition used in the shear cases. The fields 
were selected to have significant contribution by the nonlinear terms of the 
NavierStokes equations. For high strain rates, Sq2/c > 10, the flows behaved in 
accordance with rapid-distortion theory ; the structures observed were simply those 
of the initial conditions stretched by the mean strain, and anisotropy levels showed 
little increase with further increase in non-dimensional strain rate. The ratios of the 
mesh sizes to the Kolmogorov lengthscales are 1.44,l .25 and 1.11 for the contraction, 
expansion and plane-strain cases respectively. Table 2 shows the parameters of the 
selected fields and the coordinates in which the strain was imposed. In  this table the 
total strain is defined by 

total strain = exp jS(t’) dt’. 

For a comparison of typical runs with experimental results, see Rogallo (1981). 
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Axisymmetric 
contraction 

Total strain 3.32 
Re, = !A,, 1 I v  17.2 
Re, = QL,,, 1 Iv  19.2 
Re, = q'/ev 48.1 
SL,,, ,In 1.29 
S!lP/€ 3.22 

0.150 
0.412 
0.438 

Axisymmetric 
expansion 

3.32 
15.9 
28.2 
48.0 

1.82 
3.09 
0.525 
0.241 
0.234 

Plane 
strain 

4.00 
13.1 
16.6 
41.6 

1.52 
3.81 
0.335 
0.506 
0.159 

Y 

2 I 

TABLE 2. The parameters of the fields selected for study, and the coordinates in which the strain 
waa imposed. Total strain = exp jS( t ' )  dt'. 

3. Structure of the vorticity fields in the homogeneous-shear-flow 
simulations 

The computed flow fields were analysed in a manner similar to the channel-flow 
study of Moin & Kim (1985). Since the low-Reynolds-number caae has a limited range 
of scales, it is easier to identify the organized structures in this flow. For this reason 
we will examine this case first and then analyse the high-Reynolds-number field. 

3.1. Lour-ReynoEds-number shear m e  
At each grid point, the inclination angle of the vorticity vector to the mean-flow 
direction 0 = tan-' (wJw,) 

is calculated. The sign convention for the angle 0 and the coordinate system are shown 
in figure 3. Figure 4 shows the distribution of this angle at St = 2.0. The contribution 
from each grid point to the histogram is weighted by the magnitude of the projection 
of the corresponding vorticity vector onto (z, y)-planes, (w: + w$ The distribution 
attains rather sharp maxima at 45' and - 135O (the direction of principal elongation 
of the mean strain) with a maximum-to-minimum ratio of about 20: 1. When the 
contributions to the histogram are not weighted by the vorticity magnitude, the 
maximum-to-minimum ratio decreases to approximately 5 :  1. Figure 5 shows the 
weighted distribution of 8 for the initial flow field (i.e. St = 0). The initial vorticity 
field exhibits no directional preference as expected for an isotropic field. Apparently, 
the shearing motion causes the remarkable organization of the instantaneous 
vorticity vectors displayed in figure 4. The fact that the weighted histogram has a 
substantially higher maximum-to-minimum ratio than the unweighted histogram 
indicates that not only are the vorticity vectors predominantly oriented at 45' or 
-135O, but also that such orientation is accompanied by increased vorticity 
magnitude. This is as expected because a vortex filament so oriented is subject to 
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FIGURE 3. Coordinate system and sign convention for angle 0. 

e 
FIGURE 4. Distribution of the inclination angle of the projection of the vorticity vectors in 

(5, y)-planes; data weighted with the magnitude of the projected vorticity. 
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FIQURE 5. Distribution of the inclination angle of the projection of the vorticity vector in 
(z, y)-planes for the initial field; data weighted with the magnitude of the projected vorticity. 

maximum stretching by the mean strain and its vorticity is increwed. This result 
illustrates the importance of vortex stretching by mean shear to the dynamics of shear 
flows and indicates that planes inclined near 45' to the mean-flow direction are likely 
to contain strong vortical structures. 

Figure 6 shows the two-point correlations of the three velocity components (at 
St = 2.0) with separation along the 2-, 8- and n-directions (see figure 3). The two-point 
correlation is defined aa 
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FIGURE 6. Two-point correlatiom of the velocity components with the direction of separation in 
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where x is the position of each point and r is the separation vector. The average in 
the above equation (and throughout this report) is taken over all three space 
dimensions; homogeneity implies that this is equivalent to an ensemble average over 
many flow fields. The separation distance haa been non-dimensionalized by the 
lengthsale (v/S)k The most interesting feature of these correlations is the behaviour 
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I 

FIGURE 7 .  Sketch of the vortical structures inclined at 45" to the wall. 

of Rww, the correlation between the spanwise velocity fluctuations. In particular, 
Rww(rg) does not become negative (i.e. it  does not cross the abscissa to within 
statistical fluctuations), whereas the R,, correlations with separations in other 
directions do cross the abscissa. This is consistent with a vortex tube inclined at 45' 
to the flow direction (see figure 7). Along the structure (s-direction) w-velocity 
maintains the same sign, whereas crossing through the vortex tube i t  changes sign. 

were examined to 
more precisely investigate the structure of the vorticity field (figure 8). Their 
behaviour strongly supports the presence of strong vortical tubes that are elongated 
and inclined at 45' to the mean-flow direction. The ws component of vorticity is well 
correlated over a considerably longer range along rS than it is along separations in 
rz and, especially, T ,  (or rz and ry  - not shown). Figure 8 also shows the substantial 
crossing apparent when R,. w8(rz) is examined. This crossing indicates that a vortex 
tube of opposite sign is often located nearby in the z-direction. The very rapid decay 
of Rwrrws(r,J shown in figure 8(c) is expected because two-point correlations weight 
hairpins with high vorticity magnitudes heavily and such hairpins consist of highly 
stretched vortex filaments with small diameters. The slight negative region in figure 
S(c) is probably a consequence of inadequate resolution of these strong but small- 
diameter vortices. 

The instantaneous vorticity fields were analysed for direct evidence of the presence 
of hairpin vortices. Figure 9 shows the projection of vorticity vectors (at St = 2.0) 
on a randomly selected plane inclined at 45'. Hairpin vortices are clearly discernible, 
identified by two regions (legs) with opposite wg signs connected at the top (or bottom 
for inverted hairpins) by a region with w, = 0 and finite w,. Note that this projection 
shows clearly only those hairpins with both legs in the (8,z)-plane. The projection 
of the vorticity vectors of the initial flow field (St = 0) on the same plane (figure 10) 
shows random vectors with no evident coherent structures. 

A hairpin vortex can be displayed by vortex lines drawn in three-dimensional 
space. These lines are everywhere tangent to the vorticity vectors and are defined 

d x w  
ds 101' 

Two-point correlations of vorticity, particularly those of Rw8 

by 
_ -  -- 
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FIQURE 9. Projection of the instantaneous vorticity vectors on a plane inclined at 45'. 
Tick-marks represent the location of the computational grid. 

FIGURE 10. Projection of the initial-field vorticity vectors on the same plane as in figure 9. 
Tick-marks represent the location of the computational grid. 
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L - I 

2 

(4 
FIQURE 11. Typical vortex lines displaying a hairpin-like structure. (a) Three-dimensional 

view; (a) end-view (y, %)-plane; (c) side-view (5, y)-plane. 

where a is the distance along the vortex line and o is the vorticity vector at point 
x. Initial points of integration x,, were selected on the legs of the structures that 
appeared to be part of a hairpin in the vector plots. The vortex lines were then traced 
out by integrating the above equation. Figure 11 shows a typical collection of vortex 
lines which display a hairpin-like structure. The hairpin vortices are formed from the 
deformation or roll-up of sheets of transverse (mean) vorticity and generally do not 
have legs elongated in the z-or z-direction. In agreement with Hama's (1962) analysis, 
the tips of the hairpins have a GI shape because of self-induction effects. However, 
this form of the tips is not as pronounced as that observed in channel flow. It can 
be shown that the uniform shear in this flow (in contra& to the reduced shear in the 
outer region of boundary layers) dominates the self-induction effects and inhibits the 
progressive deformation of the tip region into pronounced D shapes and ultimately 
into ring vortices (Moin, Leonard & Kim 1986). The hairpins traced out by this 
method - generally have strong vorticity (about three times the r.m.8. vorticity, 
o = (otui)i, and four to five times the mean vorticity 8). 
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FIQURE 12. Distribution of the inclination angle of the projection of the vorticity vectors in 
(2, y)-planes at non-dimensional times St = 4.0,8.0,14.0; data weighted with the magnitude of the 
projected vorticity in the high-Reynolds-number sirnuletion. 

3.2. High-Reynolds-number shear ease 
Figure 12 shows the weighted distribution of the inclination angle of vorticity vectors 
8 at three dimensionless times (St = 4.0, 8.0 and 14.0). Again, the histograms show 
pronounced maxima near 45". Starting at St of about 6, however, the histograms 
become noticeably skewed and their peaks move to lower angles, stabilizing between 
8 = 35'40". The weighted histograms in figure 12 show this shift more dramatically 
than the corresponding unweighted plots, implying that it is the strong, highly 
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FIGURE 13. Two-point-correlation contour plots of Bww(rz,r,,). (a) 1st = 2.0; (b)  4.0; (c) 8.0; (d)  14.0. 
Contour levels at multiples of 0.1 times the zero-separation value. Each side is one-quarter the 
computational box size in that direction. 
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FIGURE 14. Two-point-correlation contour plots of R,,,(r,, rJ. (a) 1st = 2.0; (b)  4.0; (c) 8.0; (d)  14.0. 
Contour levels at multiples of 0.1 times the zero-separation value. Each side is one-quarter the 
computational box size in that direction. 

stretched vorticity that lies at lower angles. The reason underlying this time 
development of the histograms becomes clearer if we look at the sequence of contour 
plots (figure 13) of the two-point correlation, R,,(r,, rv).  Given an inclined vortical 
structure, the longest coherence in w-velocity is along the axis of the vortical tube. 
As St increases, the structure tends to be stretched and rotated. To ensure that the 
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Y 

FIQURE 15. Sign convention for angles a and B. 

R,, velocity correlation wm in fact indicative of vortical structure, contour maps 
of vorticity two-point correlations were also examined. Strictly speaking, we want 
to find which value of 8 maximizes the correlation distance of R,,,(r,, rv) where wo 
is the component of vorticity in the &direction. This would require computing such 
correlations at all angles 8. However, given a strong, coherent vortical structure, we 
expect its components ox and o, to exhibit roughly the same behaviour as the 
vorticity along the axis of the structure. Given that our coherent structures typically 
lie in the range 8 = 22'45" the Rwawa correlation behaviour would be expected to 
more closely approximate the Roe wB correlation along the structure than either Rwl w1 

or Ruryr. RulWl(r,, ry), R,,,z,2(rz, rv) ,  and R,80s(rz, rv) all showed the same qualitative 
behaviour, and RouWu(r,, rv) had almost exactly the same angle of maximum 
correlation as the Rww(rz,rv) correlation. Thus it appears that the w-velocity 
correlations are indeed good indicators of vortex structure in this flow. Figure 14 
shows the time development of R,,,808(rz, rv).  Initially, the structure is stretched along 
8 = 45' by the mean strain, but as time goes on, the mean rotation tends to rotate 
the structures as they become highly stretched. By St of about 8, an equilibrium seems 
to have been reached between the mean rotation and some restoring force, possibly 
the self-induced motion due to the velocity field generated by the hairpin, and 8 
stabilizes near 22'. Note that although this is close in magnitude to the angle of the 
principal axes of the Reynolds stress tensor, it is of opposite sign and their similarity 
in magnitude appears coincidental. 

At St = 8.0 the angle of the principal axes of the ore, tensor is about 40'; it is 
slightly above this value at lower St values and slightly below at higher St. Although 
these values are in good agreement with the 8-histograms, they are substantially 
higher than the 22' obtained from the two-point correlations. As mentioned before, 
the two-point correlation function strongly favours the high-magnitude-vorticity 
structures. Figures 13 and 14 thus reflect the behaviour of the old, highly stretched 
vortex filaments and are not typical of most of the vorticity structure in these flows. 

After the conclusion of this study, the two-point-correlation contour plots of 
R,,(y, y + rv, rz) were computed for the channel-flow database of Moin & Kim (1985). 
Here y is the inhomogeneous direction normal to the channel walls and 2 is the 

- 
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FIGUBE 16. Two-angle probability-distribution function. (a) St = 2.0; (b)  4.0; (c) 8.0; (d )  14.0. The 
minimum contour level is lo00 and the levels are incremented by 500. 809 corresponds to the 
isotropic level. 

streamwise direction. They show that in the regions away from the walls the direction 
of maximum correlation length is along 0 of about 35'. 

The two-angle probability-density function (p.d.f.) gives all the directional infor- 
mation of the vorticity vector and comparison of weighted and unweighted p.d.f.s 
indicates where the high-magnitude vorticity is located. The angle a is the angle 
between the vorticity vector and the y-axis; /3 is the angle between the projection 
of the vorticity vector in the (z,z)-plane and the z-axis. These angles and the sign 
convention used for the p.d.f.s are shown in figure 15. Figure 16 shows the time 
development of the unweighted two-angle p.d.f.s for the high-ltteynolds-number 
simulation. Assuming that the primary structures contributing to the behaviour of 
the peak values in figure 16 are hairpin vortices, it can be seen that at early times 
the peak regions correspond to hairpin legs (i.e. a z 45', small 1). As the flow 
develops, a central peak forms at the location corresponding to mean vorticity 
(a = W", /3 = 90'). Also, as old hairpins are toppled by the mean rotation, the peaks 
corresponding to hairpin legs move toward a = 90". These two effects cause the p.d.f. 
to show a more s-like shape. It is interesting to note that lines of constant 0 on these 
contour plots have an s-like shape roughly similar to the contour profiles. The bold 



50 M .  M .  Rogers and P. Moin 

/ 

FIGURE 17. Vortex lines displaying a spanwise vortex structure. (a) top view; ( b )  rear view. 

line in figure 16(c) represents the location of vectors lying in a plane inclined a t  
0 = 45O in the p.d.f. plots. By about St = 8.0 an equilibrium is reached between the 
destruction of highly stretched, old hairpin vortices and the creation of newly 
developing structures. Beyond this point the two-angle probability distribution 
remains relatively unchanged. 

The build-up of strong vorticity in the region corresponding to mean shear in the 
p.d.f. contour plots (figure 16) is clearly apparent by St = 8.0. Vorticity-vector plots 
and vortex lines in three-dimensional space (figure 17) confirm the existence of strong 
vortex filaments aligned with the mean vorticity. Since these structures do not 
develop until relatively late compared with the generation of hairpins, and since 
hairpins consist of much stronger vorticity than the mean, one might speculate that 
these vortex filaments are remnants of the tip region of old hairpin vortices. Since 
the tips of these vortices are aligned with the mean vorticity, they are not stretched 
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FIGURE 18. Rossby-number time development. 0,low-Reynolds-number simulation ; 
0, intermediate-Reynolds-number simulation ; A, high-Reynolds-number simulation. 

by the mean strain, but only by induced motions of the fluctuating field. The legs 
of the hairpins, on the other hand, are stretched by the mean strain and so might 
be expected to be destroyed first. This would leave a high-magnitude vortex filament 
aligned with the mean that presumably would be more resistant to turbulent 
fluctuations than the comparatively weak mean vorticity . 

A more plausible explanation for the formation of these strong spanwise filaments 
of vorticity is that they simply result from the imposed mean-rotation component 
of the mean shear. The mean deformation tensor for homogeneous turbulent shear 
flow can be decomposed into a plane-strain component and a mean-rotation 
component. The origin of hairpin vortices seems to be associated with the stretching 
of turbulent fluctuations along the direction of mean strain. It is therefore plausible 
to expect that another structure may result from the mean rotation. Hopfinger, 
Browand & Gagne (1982) have found that turbulence in a rotating tank tends to 
develop vortical tubes aligned with the mean vorticity. The strength of these vortices 
was determined to be up to 50 times that of the tank vorticity 256, and of the same 
sign. Once formed, these structures were very persistent, having an average lifetime 
of about St = 200. The time required for the development of coherent vortices 
spanning the entire experimental-tank depth waa found to be on the order of St = 80. 
It is thus reasonable that by St = 8.0 we have a number of strong vortices (about 
eight times the mean vorticity) coherent for roughly one-tenth the spanwise extent 
of our computational box. 

For rotational flows at small Rossby number we expect Taylor-Proudman columns 
to develop because the mean rotation dominates the turbulence. For large Rossby 
numbers the effects of rotation will be negligible. In this flow, the characteristic 
velocity scale relative to the mean is q, the large-scale lengths can be represented by 
@/e and the rotation rate is $5'. This yields a Rossby number of Ro = 2e/Sq8. The 
time development of Ro is shown in figure 18 for three simulations. For the developed 
shear fields the Rossby number is on the order of 0.2 and the behaviour is expected 
to be a combination of the two extremes decribed above. It should be noted that the 
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FIQURE 19. Dependence of fi-location of hairpin legs on microscale Reynolds number. 
0, unweighted p.d.f. results; 0, weighted p.d.f. results. 

strong spanwise vortex filaments do not form until the Rossby number drops to about 
0.25 at St = 6.0. Hopfinger et al. (1982) found the critical Rossby number (below 
which strong vortical tubes formed) to be about 0.2 in their flow. For the low- 
Reynolds-number case we have Ro = 0.637 and the strong spanwise filaments were 
not observed in either the vector plots or the two-angle p.d.f.s. 

The angle bp corresponding to the peak contour associated with the hairpin legs 
is an indicator of the spanwise inclination of the legs. Using results from three 
different shear simulations, we see that this angle decreases with Re, as can be seen 
in figure 19. For the low-Reynolds-number case, & is about 50'; for the high- 
Reynolds-number case it is about 25' and appears to asymptotote to this value for 
Re, greater than about 70. Weighting the p.d.f.s by the magnitude of the vorticity 
vector always decreases BP since the stronger hairpins have been stretched out more, 
causing their legs to become more nearly parallel to the 2-direction. When weighted 
by the magnitude of the vorticity vector, Is, asymptotes to about 10' 88 Re, increases. 
This Reynolds-number dependence of Bp is consistent with the observed appearance 
of hairpin vortices in the vector plots. Figure 9 shows large, wavy structures with 
legs inclined in the spanwise direction. In contrast, we shall see in figure 20 that the 
hairpins of higher-Reynolds-number fields have their legs more nearly perpendicular 
to the z-direction. 

Because hairpin legs typically lie at some non-zero g, projecting them into an 
(5, y)-plane results in a value of 8 that is not simply the complement of a. From 

8 =  tan-'( 1 ) 
tan a cosg 

we can determine how the variation of /3 manifests itself in the 8-histograms and in 
the two-point-correlation contour plots. For /3 = Oo, 8 = 90'-a; for larger B, 8 will 
correspond to a somewhat larger angle. For /3 = 25' (high-Reynolds-number case), 
the difference between 8 and 90'-a is under 3' over a range of a near 45'. Taking 
,9 = 50' (low-Reynolds-number case), however, yields a difference of 12'-13' for the 
same range of a. For the highly stretched hairpins (weighted p.d.f.) that have 
/3 = lo', 8 is less than 0.5' larger than 90'-a for all a. It is thus clear that, 
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FIQURE 20. Projection of the instantaneous vorticity vectors on a plane inclined at (a) 45" and 
(b)  26.6O (from the high-Fteynolds-number simulation at fit = 8.0). In (a) some of the structures 
resembling hairpin vortices are shaded. Tick-marks represent the location of the computational 
grid. 
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FIGURE 21. Vortex lines displaying hairpin-like structures. Vortex lines were initiated on the 
structures marked (a) A and (b )  B in figure 20(a). 

particularly for the low-Reynolds-number simulation, the a-location of the peak 
corresponding to hairpin legs in the two-angle p.d.f. is not simply the complement 
of the 8-location of the peak in the 8-histogram. 

The projection of vorticity vectors at the dimensionless time St = 8.0 in a plane 
inclined at 45' to the flow direction is shown in figure 20(a). A number of hairpin 
vortices are discernible. However, they do not appear to be as pronounced nor quite 
as frequent as those in the low-Reynolds-number simulation. This is primarily due 
to the broadening of turbulence spectra with increasing Reynolds number. Since the 
two-point-correlation contour plots indicated that a number of large coherent 
structures could be found in planes inclined as low as 2 2 O ,  we also examined the 
instantaneous-vorticity-vector projections onto a plane inclined at 26.6' (a compu- 
tationally convenient value) to the flow direction. For larger St, where the two-point 
correlation indicated the presence of these low-angle structures, this resulted in some 
improvement in the detection of vortical structures (figure 20b) .  Drawing vortex 
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FIGURE 24. Distribution of the inclination angles of the projection of the vorticity vectors for 

axisymmetric contraction in (a) (z, y)-planes and (b)  (y, z)-planes. 

In  order to determine whether the hairpins were actually disappearing, or were 
simply being obscured by small-scale vorticity, we filtered these fields with a Gaussian 
filter. The removal of high-wavenumber background vorticity allows the character- 
istic hairpin vortices to be viewed more clearly, as seen in figure 22 (compare with 
figure 20a). Note that the hairpin structures in figure 22 are clearly evident, even 
without the shading used in figure 20(a). The fact that a filtered high-Reynolds- 
number field is qualitatively similar to a low-Reynolds-number field is indicative of 
the fact that hairpin vortices are present in higher-Reynolds-number fields where 
small-scale vorticity may obscure them. Filtering the flow yields a field that has 
complete capture of the dissipation scales. Because the same hairpins are still evident 
in this field we can be assured that the original field adequately captured the relevant 
scales for the study of these large-scale vortical structures. 

To further address the question of whether one can extrapolate the present results 
to high-Reynolds-number flows (i.e. whether the hairpins continue to persist at very 
high Reynolds numbers), the size of the hairpins was examined as a function of Re,. 
The distance to the negative peak of the RU8 Jr5)  two-point-correlation profile is an 
indicator of the average hairpin size L,, this being representative of the distance 
between the centres of the hairpin legs. Taking L = q3/e as the characteristic 
large-eddy lengthscale and the Kolmogorov scale q = ( v 3 / 4  as a measure of 
small-scale length, the Reynolds-number dependence of LJL, L,/A,,, and L,/p was 
examined using data from four shear runs at several non-dimensional times St. The 
ratio LJL collapses the data from all runs onto one characteristic curve that indicates 
a power-law dependence on Re,, as seen in figure 23(a). Whether L,/L eventually 
does drop to zero or asymptotes to a positive constant is impossible to determine 
without computations with an order of magnitude more grid points. We can, however, 
be reasonably sure that hairpins persist to at least Re, of about 2W300, which is 
on the order of the experimental Reynolds numbers reported in table 1. LJh,,, , 
increases with Reynolds numbers for developed shear flows (figure 23b), implying 
that hairph vortices grow faster than the longitudinal microscale. This provides 
strong evidence that hairpins are not limited to low-Reynolds-number flows. It 
should also be noted that because LJq continually increases with Re, (figure 23c), 
the hairpins are not associated with the smallest scales in the flow. 

A brief examination of the velocity fields was also conducted. For both Reynolds 
numbers contour plots of instantaneous uv showed very intermittent regions of 
production, similar to the behaviour observed in turbulent channel flow (Moin 1985). 

' 
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FIGURE 26. Projection of the instantaneous vorticity vectors for axisymmetric contraation on 
an (x, 2)-plane. Tick-marks represent the location of the computational grid. 

In contrast to the channel-flow results, no streaks were observed in contour plots of 
u, but the contours were slightly elongated in the %-direction. In  the near-wall region 
where streaks were observed in the channel-flow simulation SL,,,,/q was on the 
order of 100 being the integral lengthscale of the Ruu(rz) correlation); the 
corresponding values for our homogeneous shear caws (see table 1) are substantially 
lower, about 2.6. 

4. Structure of the vortidty fields in the irrotational-straining-flow 
simulations 

4.1. Axisymmetric contraction 
For the irrotational straining fields we examine not only the inclination angle 8, but 
also $ = tan-l (wJwz). 

In the homogeneous shear cases, $ was dominated by the mean shear and was less 
informative. The histograms for the axial-contraction case are shown in figure 24 (all 

s Y L M  176 
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FIQURE 27. Distribution of the inclination angles of the projection of the vorticity vectors for 

axisymmetric expansion in (a) (2, y)-planes and (b) (y, +planes. 

results for this case are for a total strain of 3.32). It is immediately apparent that 
the vorticity is being pulled in the direction of positive strain and is isotropic in +. 
Weighting the &histogram by the magnitude of the vorticity vector results in a higher 
maximum-to-minimum ratio of 12: 1 (compared with just under 5: 1 for the 
unweighted histogram), indicating, as in the shear-flow cases, that it is the large- 
magnitude, highly stretched vorticity that is more likely to be found aligned with 
the expansive mean strain. The histograms are symmetric around their peaks. 

Figure 25 shows the two-point correlations of the components of the vorticity 
vector. They suggest the presence of longitudinal vortices elongated in x, the direc- 
tion of expansive strain. The similarity between figure 25(b and c) is due to the 
axisymmetric nature of the flow. The velocity correlations are also well correlated 
to substantially greater separations in the x-direction than in the other directions. 

The instantaneous vorticity vectors are shown in figure 26. The bold arrows 
indicate the direction of mean strain. Coherent vortex filaments elongated in the 
straining direction are visible. Three-dimensional vortex lines are not as informative 
for irrotational straining flows as for the shear flow because in the absence of mean 
shear a vortex line will wander around the computational box a number of times, 
passing through many different structures before finally intersecting a boundary. 

4.2. Axisymmetric expansion 

The unweighted histograms at a total strain of 3.32 are shown in figure 27. The 
8-histogram has symmetric peaks at & 90°, indicating, as expected, that the vorticity 
is compressed into (y, 2)-planes. Weighting by the magnitude of the vorticity vector 
increases the maximum-to-minimum ratio from about 3.5: 1 to about 5.5: 1.  This 
increaae is less than that observed in the other flows because the expansive strain 
is spread over two dimensions instead of being concentrated in one direction. The 
+-histogram is isotropic owing to the flow axisymmetry. This leads one to expect 
vortical structures randomly located in (y, %)-planes. Two-point correlations of vor- 
ticity (figure 28) show little correlation in the x-direction. The y- and z-correlations 
are similar to each other, as expected by axisymmetry. 

Figure 29 shows a typical instantaneous vorticity-vector plot in a (y, 2)-plane. It 
is difficult to see a characteristic structure in this flow. The (y,z)-plane has no 
preferred direction (figure 27) and although there are many ring-like structures, there 
are also regions of strong, coherent vorticity that are not part of a ring. 
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FIQURE 29. Projection of the instantaneous vorticity vectors for axisymmetric expansion on an 
(y, 2)-plane. Tick-marks represent the location of the computational grid. 
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FIGURE 32. Projection of the instantaneous vorticity vectors for plane strain on an (z, z)-plane. 

Tick-marks represent the location of the computational grid. 

4.3. Plane strain 
At a total strain of 4.00, we see that both the &and $-histograms (figure 30) 
peak symmetrically at around 0" and 180". Weighting the histograms changes 
the 8-distribution negligibly but increases the maximum-to-minimum ratio of the 
$-distribution from 6: 1 to 17: 1. The stretching in this flow is occurring in the 
z-direction, and thus it is expected that the high-magnitude, stretched vorticity is 
at $ = 0" and 180". The increased magnitude of these stretched filaments is 
manifested in the increased maximum-to-minimum ratio of the weighted $- 
histogram. The compression in the y-direction does cause B to peak at 0" and 180°, 
but does not strongly affect the magnitude of the vorticity because the weighted 
&histogram is almost identical with its unweighted counterpart. It appears that 
compressing a vortex filament does not tend to fatten it, but rather causes it to change 
direction or buckle, weakening it little if at all. 

The two-point correlations shown in figure 31 show coherent vortical structures 
elongated in the direction of stretching, z, and short in the direction of compression, 
y. We also observe some elongation in x probably caused by the buckling of vortex 
filaments. The instantaneous vorticity vectors plotted in a typical (z, 2)-plane are 
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shown in figure 32. We see elongated structures similar to axisymmetric contraction 
vortices and a few ring-like structures similar to those observed in the axisymmetric 
expansion flow. The strain-rate tensor in the plane-strain flow can be written as a 
linear combination of the strain-rate tensors for axisymmetric-contraction and 
axisymmetric-expansion flows. This leads to some speculation as to whether vortex 
structure is qualitatively also additive. 

5. Conclusions 
The structure of the vorticity field in homogeneous turbulent shear flow and in 

homogeneous irrotational straining flows has been examined using a database 
generated by direct numerical solution of the unsteady Navier-Stokes equations. In 
all cases strong evidence for the presence of coherent vortical structures was found. 
The initially isotropic vorticity fields were rapidly affected by imposed mean strain 
and the rotation component of mean shear and developed accdrdingly. The pulling 
of vortex filaments by the mean flow causes them to align with the direction of 
expansive strain and be stretched. This results in high-magnitude vorticity being 
especially aligned in the direction of expansive strain. Compression of vortex 
filaments tends to cause them to change direction or buckle, weakening them little 
if at all. Compressing a vortex filament is thus not simply the inverse of stretching. 
In the homogeneous-shear-flow cases, the roll-up of mean vorticity into characteristic 
hairpin vortices was clearly observed. The average spacing between the hairpin legs 
L, waa found to increase faster than the Taylor microscale as Reynolds number 
increased, indicating that hairpin vortices are not simply a low-Reynolds-number 
phenomenon. The results of the present study and of a similar study in turbulent 
channel flow support the assertion that hairpin vortices are an important vortical 
structure in all turbulent shear flows. The similarity in vortex structure between the 
homogeneous shear flow and inhomogeneous channel flow gives strong justification 
for the study of homogeneous ' building-block ' flows as a stepping stone to under- 
standing more complex flows. The absence of mean shear in the homogeneous 
irrotational straining flows precludes the presence of hairpin-like vortices. Viewing 
two-dimensional instantaneous vector plots in the plane of mean strain does show 
coherent vortex structure, however. Axisymmetric-contraction flows develop elon- 
gated vortical structures in the stretching direction, and axisymmetric-expansion 
flows show no unique structure but have a number of ring-like structures present. 
Plane-strain flows appear to contain some combination of the structures observed in 
the axisymmetric cases. 

We are indebted to Dr Robert S. Rogallo, Professor William C. Reynolds, and 
Dr Moon J. Lee for helpful discussions during the course of this work. The results 
presented in figures 22 and 23 sprang from discussions with Professor Peter Bradshaw 
of Imperial College for which we are very grateful. 
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